

The Oxy-combustion Burner Development for the Lacq CO₂ Pilot

D. Cieutat, I. Sanchez-Molinero, R. Tsiava, P. Recourt (Air Liquide) N. Aimard, C. Prébendé (Total)

N. Docquier (Air Liquide) GHGT 9 - November 20th, 2008

Lacq CO₂ Pilot

Pilot location - Total Exploration & Production France

Carbon capture & geological storage in Lacq region

CCS Lacq pilot plant – Major challenges

- Industrial scale 30MWth oxycombustion unit with gas
- Revamping of a conventional boiler
- CO₂ transport and injection for 2 years
- 120 kt CO₂ storage in a depleted reservoir
- First CO₂ injection for storage in France
- Public acceptance with consultation and dialogue
- French and international legal framework not frozen

Boiler revamping

- **Existing boiler revamping** with CO₂ recycling.
- 40 t/h steam 60b/450°C (30MW_{th}) to HP network.
- **Alstom in charge of boiler** revamping works.

Cryogenic Air Separation Unit

Standard ASU packaged plant

- 240 tpd O2
- LP: 1,8 bar abs
- **Variable purity (95-99,5% O2)**
- No oxygen storage

Construction

Oxy-burner development

Oxy-burner Concept for Oil & Gas Applications

- Challenges for oxy-burner concept:
 - In-furnace heat flux management
 - Minimize flue gas recycle (FGR)
 - High viscosity / high density liquid fuels
 - High sulfur and high metals content
 - Use of usual materials

- Fuel flexibility for gas & liquid fuels
- Variable flue gas recycle rate
- Air mode for transient operation
- Important turndown ratio
- Oxy-flame stability with uneasy fuels
- Optimum operating procedures (air-oxy mode)

Air Liquide Oxy-burner Principle

No external oxygen mixing:

- Intrinsic oxygen flames advantages:
 flame stability, turndown ratio, uneasy fuels.
- Improved operating safety: dedicated pure oxygen circuit all along distribution system.
- Additional flexibility to adjust FGR rate.

Air Liquide oxy-burner

Oxy-burner Development path

Size

8 MW

8 MW oxy-burner design for Lacq boiler

1 MW prototype **AL-R&D** center rig

4 x 8 MW burners being set up in Lacq boiler

1 MW

2006 2006-2007 2008

- **Upscaling know-how**
- CFD modeling using proprietary code
 - Specific to oxy-combustion
 - Fine tuned with oxy-combustion experimental data

1 MWth Oxy-combustion Test Rig

- Versatile and functional test rig
 - Variable FGR rate and temperature
 - Liquid / gas fuel feed capability
 - Cold wall configuration
 - Combustion monitoring
 - **Emission control**

Experimental Results at 1 MWth Test Rig

- High CO₂ concentration achieved:
 - 94% vol dry systematically.
 - Importance of pressure control along FGR circuit to avoid air in-leakages.
 - Slightly positive pressure in chamber.
- Views of 1 MW oxy-burner prototype with natural gas:

FGR rate = x / y

FGR = 1

FGR = 1,5

Experimental Results at 1 MWth Test Rig

- reduced FGR
- Adjustable flame length
- Air mode for transient operation
- Controlled heat flux with
 Large turndown ratio (10%)
 - Oxyflame stability with uneasy fuels
 - Rehearsal of burner operating mode

FGR rate = x/y

Oxy-burner Implementation into Lacq Boiler

- Retrofitting of an air-fired boiler
 - Oil & Gas boiler configuration
 - Fixed geometry:
 - 4 horizontal burners
 - Chamber: L 5 m; W 4,5m; H 6-7m
- Careful sealing at every interface to minimize air in-leakage
- Fluid distribution control and measurement
- Operating mode
- Safe operation Safety analysis
- Tests and measurement plans

Openings for the 4 existing air-fired natural gas burners

Existing measurement port

Conclusions

- Total CO2 Lacq pilot will demonstrate integrated scheme (from capture to storage) feasibility at industrial scale
- ✓ Oxy-combustion is a proven technology that facilitates CO₂ capture.
- ✓ Air Liquide oxy-burner concept with separate injection of oxygen and flue gas recycle - enables safe oxygen handling for oxycombustion in boilers.
- ✓ Oxy-burner performances demontrated in a 1MW boiler
 - √ fuel flexibility
 - ✓ Turndown
 - ✓ FGR rate flexibility
 - ✓ air to oxy transition
- Scale-up of the oxy-burner to 8 MW
- Start-up of the retrofitted oxy-boiler is scheduled early 2009.

Thank you!

www.airliquide.com

www.total.com