Zero Emission Platform CO₂ Capture and Storage (CCS) – Matrix of Technologies « Technology Blocks » 15 October 2008 FINAL (V9) ## **Agenda** - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix # CO₂ capture, transport and storage value chain ## CO₂ capture technology principles | CO ₂ capture technologies | | CO ₂ capture principle | Combustion principle | Power plant definition | |--------------------------------------|------|--|----------------------------|---| | Oxyfiring | Coal | High concentration CO ₂ stream production | O2 combustion of coal/gas | Oxy-firing plant
(Boiler-based) | | Post-
combustion | Coal | Exhaust gas CO ₂ | Air combustion of coal/gas | Pulverised Coal (PC) or Circulating Fluidised Bed (CFB) | | | Gas | scrubbing | | Natural Gas Combined Cycle (NGCC) | | Pre-combustion | Coal | Inlet gas CO ₂ | Air combustion of H2 | Integrated Gasification Combined Cycle (IGCC) | | | Gas | cleaning | | Integrated Reforming Combined Cycle (IRCC) | # CO₂ capture, transport and storage value chains ## **Agenda** - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix #### Validation status definition Validation status Principle Not validated Not tested / Less advanced than pilot scale Partially validated Ready for large demo project Fully validated Commercially available # Oxyfuel technology blocks (boiler-based) – current validation status # Oxyfuel technology blocks – current validation status # Oxyfuel technology blocks – expected performance improvement # Post-combustion (boiler-based) – current validation status # Post-combustion (GT-based) – current validation status ## Post-combustion technology blocks – current validation status Overall process integration Capture blocks to be validated (Amines, Ammonia...) Boiler-based process more advanced # Post-combustion technology blocks – expected performance improvement # Pre-combustion technology blocks – current validation status ## Pre-combustion technology blocks – current validation status proven blocks Validation more advanced than on Oxyfuel or Postcombustion capture Validation of high efficiency H2 GT desirable Future focus on integration and scale-up of already ### Pre-combustion technology blocks – expected performance improvement # **Current validation initiatives – Oxyfuel** #### Overall process integration #### 250MW PC / 150MW CFB All capacities are expressed in MW Gross electrical - A few validation initiatives operating or under construction. - Need for a set of large demos for ASU, boiler and components scale-up and integration Industry initiatives (existing or potential) # **Current validation initiatives – Post-combustion (boiler-based)** #### Overall process integration #### 100MW All capacities are expressed in MW Gross electrical - A few validation initiatives operating or under design and construction. - Need for a set of large demos for capture scale-up and integration Industry initiatives (existing or potential) # **Current validation initiatives – Post-combustion (GT-based)** #### Overall process integration #### 100MW All capacities are expressed in MW Gross electrical - A few validation initiatives operating or under construction. - Need for a set of large demos for capture scale-up and integration Industry initiatives (existing or potential) # Current validation initiatives – Pre-combustion #### 450MW All capacities are expressed in MW Gross electrical 450MW is based on diffusion technology - No further validation initiatives for the moment - Need for a set of demos to validate integration and components scale-up Industry initiatives (existing or potential) ## CO₂ capture – synthesis - Difference in validation status within the different CO₂ capture technologies - Pre-combustion technology blocks more advanced than for Post-combustion and Oxyfuel - Overall integration is the less advanced technology block - Additional work needed on non-capture technology blocks to enhance plant performances and ease integration of CO₂ capture systems - A number of large demonstration projects are under evaluation in the industry Need for a large number of demo projects to validate technology blocks and integration ## **Agenda** - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix ## **Efficiency improvement** #### **Target** Steam cycle Increase steam parameters (350 bars, 700/720°C) New Ni-based alloys to be tested | | Performance increase | Validation initiatives | |---------|---|------------------------| | Turbine | New material | COMTES
Cooretec | | Boiler | New material testing and manufacturing | COMTES
MARCKO | | Plant | New material identification and testing | COMTES
AD700 | Efficiency improvement through steam parameter increase should ease CO₂ capture validation in Post and Oxy Demo projects ## **Efficiency gains potential** | Technology blocks | Potential efficiency gains compared to current state-of-the-art* (Additional % points) | Impact on CO2 emissions and/or CCS efficiency | | |-----------------------|--|---|--------| | ASU | + 0,5 to 2 points | IGCC & Oxy | Medium | | Gas turbine | + 0,5 to 2 points | Low / Medium | | | Boiler
Steam Cycle | + 2 to 4 points | Strong | | | Fuel preparation | ± 1 to 4 points | IGCC & Oxy | Strong | | Lignite/Biomass | + 1 to 4 points | Post | Medium | | Plant integration | + 1 to 4 points | Strong | | Focus to be on Boiler/Steam cycle and Plant integration ## **Agenda** - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix # CO₂ capture, transport and storage value chain Power plant Transport infrastructure Storage infrastructure #### **Pipelines** - Onshore pipeline (already operational) - Offshore pipeline (already operational) #### Ship - Comparable to ship transportation of liquefied petroleum gas (LPG) - Already operational #### Rail/truck tankers Already operational (CO₂ for beverage) Preferred options Difficult option for large-scale operation Not considered as attractive option for large-scale transport ### **Transport processes explanation** ## Pipeline transport technology blocks – current validation status ## Ship transport technology blocks – current validation status - Strong work on integration with capture and storage required - Ship flow vs. CO₂ generated from large plant ## Commercial/Demo projects # Transport processes work flow – current validation status ## CO₂ transport – synthesis - Technology blocks more advanced than capture - Pipeline transport is commercially mature - Shipping transport already operating but at small scale - Main challenge will be network definition and transport infrastructure organisation - Pipeline network (backbone) in densely populated areas - Ship fleet management/integration with capture and storage - No validation initiative on ship transport Need for validation initiatives in shipping and CO₂ pipeline network definition # CO₂ capture, transport and storage value chain Power plant Transport infrastructure Storage infrastructure ## Depleted Oil and Gas fields Onshore or offshore depleted oil and/or gas field #### Deep saline aquifers Permeable sedimentary rock formation saturated with water #### Enhanced Coal Bed Methane Coal Bed Methane extraction through injection of CO₂ #### Enhanced Oil or Gas Recovery (EOR/EGR) Already operational (several large projects, US, Brazil, Turkey...) Options in development In development, limited potential Mature option # Outcome ### CO₂ storage process explanation Depleted fields/Deep saline aquifers # **CO₂** storage overall validation status Depleted fields/Deep saline aquifers - Tools and technology almost ready - Work on workflow definition required ### CO₂ storage detailed validation status Depleted fields/Deep saline aquifers (1/5) - Tools and technology ready - Work on workflow definition required #### CO₂ storage detailed validation status Depleted fields/Deep saline aquifers (2/5) - Tools almost ready except for existing wells - Strong work on workflow required for almost all blocks except for monitoring and verification #### CO₂ storage detailed validation status Depleted fields/Deep saline aquifers (3/5) #### CO₂ storage detailed validation status Depleted fields/Deep saline aquifers (4/5) #### CO₂ storage detailed validation status Depleted fields/Deep saline aquifers (5/5) - · Strong work on workflow required - More limited validation initiatives ## **CO₂** storage process explanation **ECBM** ## **CO₂ storage overall validation status ECBM** - Tools and technology almost ready - Work on workflow definition required #### CO₂ storage – synthesis - Technology and tools are well advanced - Very few are not validated at all - Focus is more on adaptation and capability enhancement - Main challenge will be work flow definition - Safe process definition - Adaptation of standard to CCS - Monitoring, verification requirement and operator's obligations definition - Majority of validation initiatives are not backed by practical demo projects Need for basin wide screening and practical validation projects #### **Agenda** - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix # CO₂ capture, transport and storage demo project requirements #### Coverage of validation gaps by existing validation initiatives 10-12 demo projects, potentially combining capture, transport and storage as a means of addressing 80% of technological validation gaps ####
Agenda - Overview of CO₂ value chain - CO₂ capture technologies - Efficiency improvement - Transport & Storage - Conclusion - Appendix # CO₂ capture, transport and storage value chain | | | Combustion reaction | Principle | |-----------------|------|--|--------------------------------------| | Doct combuction | Coal | C + Air => CO ₂ | Exhaust gos CO, elegning | | Post-combustion | Gas | CH4 + Air => CO ₂ + H2O | Exhaust gas CO ₂ cleaning | | Pre-combustion | Coal | C + O2 => CO
CO + H2O => CO ₂ + H2 | C-free syngas burning | | FTE-COMBUSTION | Gas | CH4 + H2O => CO ₂ + H2 | C-free syrigas burning | | Oxy firing | Coal | C + O2 => CO ₂ | High concentration CO ₂ | | Oxy-firing | Gas | CH4 + O2 => CO ₂ + H2O | stream production | #### Not selected CO₂ capture technologies CO2 capture technologies Rational for exclusion Natural gas-fired boiler Very limited market Oxy GT Oxy-firing Chemical looping High pressure oxy reactor Not mature enough, require additional R&D and pilot testing Membranes to qualify for large-scale demonstration by 2012 Anti-sublimation Post-combustion Enzymes Algae # Oxyfuel – detailed expected evolution of validation status | | | | C | urrent v | alidatio | n | | | E | xpected | by 201 | 2 | | |----------------------|---------------------------|------|------------|------------------------|----------|----------------|---------------|------|----------|------------------------|--------|----------------|---------------| | | | Coal | I I IANITA | Petcoke/
Anthracite | | Natural
gas | Off-
gases | Coal | I IMNITA | Petcoke/
Anthracite | | Natural
gas | Off-
gases | | Air Sep | aration Unit | | | | | | | | | | | | | | Fuel p | reparation | | | | | | | | - | | | | | | Ligni | te drying | | | | | | | | | | | | | | | Liquid/Gas
combustion | 1 | | | | | | | | | | | | | Fuel combustion | | d | | | | | | | | | | | | | | Circulating Fluidized Bed | ð | | | | | | | | | | | | | | Flue gas | | | | | | | | | | | | | | recycle
and O2 | O2/Fluegas mixing system | | | | | | | | | | | | | | mixing | O2 supply to burner | | | | | | | | | | | | | | Flue gas treatment | Traditional pollutants | | | | | | | | | | | | | | and flue gas cooling | Flue gas condenser | | | | | | | | | | | | | | | urification | A. | | 7 | | | | | | | | | | | | mpression | | | | | | | | | | | | | | Overa | Il process | | | | | | | | | | | | | #### Oxyfuel – capacity and performance (1/3) | Technology | | | | Performances | | | |-------------------------|---------------------------------|---|--|--------------------|------------------|------------------| | blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | | O2 flow (t/d) | 4,300 | 7,000 | 3,500 | | | | | Power consumption (kWh/t) | 250 | >220 | 200 | | ASU | Cryogenic
train | Integrated
multi-train | Power consumption O2 compression (kWh/t) | 50 | 50 | 10-15 | | (for PC) | lialli | muiu-train | Pressure out (Bar abs) | 5 | 5 | 1.3 | | | | | Temperature out (°C) | Ambient | Ambient | Ambient | | | | | Gross PG level (MWe) | One train | One train | 250MWe | | | Membranes | | embranes assumed not availab | le in Flagship o | demo timefram | е | | Fuel pre | paration | Drying for low grade fuels | Dryer throughput (t/h) | 80 | 200 | n x 200 | | | Liquid/Gas combustion | With Steam
w/o flue gas
recycle | | 5MWe | 70MWe | 250MWe | | Fuel oxy-
combustion | Pulverized
fuel firing | Including mill,
commercial
size burners
(>40MWth),
O2 mixing/ flue
gas recycle | Gross PG level (MW) | 0.5-1MWth | 30MWth | 250MWe | | | Circulating
Fluidized
Bed | With flue gas recycle and O2 mixing | | 0.1-1MWth | 10sMWe | 150MWe | ### Oxyfuel – capacity and performance (2/3) | | | | | Performance | es | | | |---|-------------------------------|---|----------------------|--------------------|------------------|------------------|--| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | Steam | cycle | Increase steam cycle efficiency | | | 46 | Scoring | | | | Flue gas
recycle
system | Flue gas recycle
fan, reheat
depending on T of
recycle, O2
preheater | Gross PG level (MWe) | 0.1-1MWth | 30MWth | 250MWe | | | | O2/Fluegas mixing system | | Gross PG level (MWe) | eq.
0.1-1MWth | eq. 30MWth | eq. 250MWe | | | Flue gas
recycle
and O2
mixing
(for PC) | O2 supply to burner or grid | Different technologies are under development for O2 supply to burner and burner gas streams. Differences are due to technology, different design philosophy depending on supplier. Different designs to be tested | Gross Power (MWth) | - | eq. 30MWth | eq. 40MWth | | ### Oxyfuel – capacity and performance (3/3) | Toobhology | | | | Performances | | | | | | | |---|-----------------------------------|--|--|--------------------|------------------|------------------|--|--|--|--| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | | | | DeNOx | Current
technology to
be improved
with respect to | | | | | | | | | | Flue gas
treatment
and
cooling | Flue gas
desulphuri-
zation | needs of
downstream
steps for NOx,
SOx, dust,
trace elements | Gross PG level (MWe) | 0.1-1MWth | 30MWth | 250MWe | | | | | | (for PC) | Particle removal before recycle | ESP and/or
baghouse
depending on
fuel | | | | | | | | | | | Flue gas condenser | Water separation | | 0.5MWth | 30MWth | 250MWe | | | | | | CO ₂
treatment | CO ₂ purification | | compression technology, trans
to be considered (N2, O2, NOx | | | | | | | | | (for PC) | Compression train | Supercritical compression | Gross PG level (MWe) | - | 30MWth | 250MWe | | | | | | | Flexibility | Plant flexibility tair & oxy modes | to increase positive commercial & technical impacts : e.g. enabling dual s | | | | | | | | | Overall process | Process integration | Load change flowhich are highly | exibility, start up, shut down ar
y dependent on each other | nd partial load be | ehaviour of all | components | | | | | | | Low grade
heat use | Recovery of wa | ste heat from ASU or CO ₂ cor | mpression in ste | am cycle | 52 | | | | | ### Post-combustion technology blocks – current validation status and expected evolution ## Scope of technology blocks for Post-combustion – capacity and performance (1/6) | Toohnology | | | | Performances | | | | | | | | |-------------------------------|---------------------------|--|-------------------------------|--------------------|------------------|------------------|--|--|--|--|--| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | | | | Fuel | Drying | Lignite | Capacity (t/h) | 15 | c.100 | c. 100 | | | | | | | preparation | Drying | Biomass | Share of cofiring by mass (%) | ? | 20 | 20 | | | | | | | | | FGR system | SC Gross power (MWe) | | | 266 | | | | | | | | | should be working in the | SC Gross efficiency (%) | | | 36.6 | | | | | | | | Flue gas | scope of actual GTCC | CC Gross power (MWe) | | | 418 | | | | | | | | | products, GT
efficiency,
lifetime and
dynamic
response;
FGR | CC Gross efficiency (%) | | | 57.5 | | | | | | | 00 | recycle (FGR) | | Lifetime vs. corrosion (kEOH) | | | 24 | | | | | | | CO ₂
enrichment | | | Flue gas recycle ratio (%) | | | 30-40 | | | | | | | in flue gas | | connection to GT blowers | System pressure loss (mbar) | | | 20 | | | | | | | | | and piping | Operating window (ratio) | | | [0;40] | | | | | | | | | Supplementar | Exhaust O2 mol fraction | Proven | | 3-8 | | | | | | | | Supplemen-
tary firing | y firing to use
all O2
available | Exhaust temperature (°C) | Proven | | >1500 | | | | | | | | | before HRSG | Turbine exhaust mass flow | Proven | | J4 | | | | | | ## Scope of technology blocks for Post-combustion – capacity and performance (2/6) | Toohnology | | | | Performances | | | |----------------------|-----------------|--|--------------------------------|--------------------|------------------|--------------------| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | Gas turbine | Liquid/gas
fired air | Gross power (MWe) | 266 | 340 | 340 | | Fuel | Gas turbline | combustion,
GT combustor
chamber | Efficiency (%) (NGCC) | 36.6 (57.5) | - | - | | combustion | Pulverized fuel | Dry/Raw lignite | Gross power (MWe) | 200/1,000 | 200/1,100 | 200/1,100 | | | Pulverized luei | Bit. coal | Gross power (MWe) | 900 | 1000 | | | | CFB | _ | Gross power (MWe) | 340 | 460-600 | 460-600 | | | Steam | Highest available | Efficiency for lignite (% LHV) | 43 | 43 | 48 | | Steam cycle | generator | efficiency is recommended for CCS | Efficiency for coal (% LHV) | 43 | 45 | 46 (50% if 700°C) | | | Steam turbine | LP steam extraction to supply CO2 scrubber | Steam temperature (°C) | 580/600 | 600/620 | 600/620
(700 ?) | ## Scope of technology blocks for Post-combustion – capacity and performance (3/6) | Technology | | | | Performar | nces | | |---
---------------------------|---|--------------------------------------|---------------------------------------|---------------------------|--------------------| | blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | Flue gas
treatment
and heat
recovery | Power | For amine capture technologies needs, usage of optimum desulfurization technology required (for | Gross power
(MWe) | 660 | 1,000 | Adjusted to techno | | | Flue Gas Desulphurization | economic reasons) Desulfurization down to the measurement limits (c.1ppm) has been demonstrated with 660MW. DeNOx | SOx concentration in flue gas (ppmv) | <1
(increased
pressure
drop) | (increased pressure drop) | | | | Particulate removal | <0.5ppm has been demonstrated as well. For Alstom chilled ammonia scrubbing state-of-the-art is (more than) sufficient. Current | Particulate matters level (mg/Nm3) | 10-20 | 10-20 | - | | | DeNOx | state-of-the -art NOx
levels are sufficient for
CO2 scrubbing.
Particulate levels as
after Wet ESP are ok. | NOx concentration in flue gas (ppmv) | <0.5 | <0.5 | Adjusted to techno | ## Scope of technology blocks for Post-combustion – capacity and performance (4/6) | Technology | | | | Performances | | | | | | | |-------------------------|--|--|--|--------------------|---------------------------|------------------|--|--|--|--| | blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | | | | Amine | Basic assumptions: 1)removal | Removal rate (t/d)
(400MWe appr. 7500tpd) | 25
(CASTOR) | 75 (NGCC);
200+ (coal) | - | | | | | | | Amine | rate for coal:
c.20t/d and | Removal rate (%) | _ | 90% | >90% | | | | | | | | MW, removal | Gross power (MWe) | 2 | 10 | >100 | | | | | | | Ammonia | rate for gas
c.10t/d and | Removal rate (t/d) | - | 60 (NGCC);
200+ (coal) | - | | | | | | | | MW, 2)min
power level
calculated on
this basis,
3)Power level
defined for
CO2 capture
process can | Removal rate (%) | - | 90% | >90% | | | | | | | | | Gross power (MWe) | 0.25 | 10 | >100 | | | | | | CO ₂ capture | | | Removal rate (t/d) | 10 | - | - | | | | | | | Other physical absorption | | Removal rate (%) | - | - | >90% | | | | | | | · | also be
slipstream | Gross power (MWe) | ? | ? | >100 | | | | | | | Scrubbing with solids (carbonate loops, others) Membranes | Assum | ned not available in Flagship Demo time frame, need further RD&D | | | | | | | | ## Scope of technology blocks for Post-combustion – capacity and performance (5/6) | Tashaalasu | | | Performances | | | | | | | | | |------------------------------|-----------------------------|---|-----------------|--------------------|------------------|---------------------|--|--|--|--|--| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | | | | | CO ₂ | Depending on compression technology, transport (corrosion?), storage option | Capacity (t/d) | 3,000 | 6,000 | >1,000 | | | | | | | CO ₂
treatment | purification | (geology),
different limits to
be considered
(N2, O2, NOx,
SOx, H2O, trace
elements, dust) | Quality | Food grade quality | Legal limits | Directive
s.2012 | | | | | | | | CO ₂ compression | to produce
supercritical
CO2; for 100MW
coal plant
25kgCO2/s is
sufficient | Capacity (kg/s) | 85 | 170 | Adapted to plant | | | | | | ## Scope of technology blocks for Post-combustion – capacity and performance (6/6) | Toohnology | | | | Performances | | | |----------------------|------------------------|---|-----------------------------|--------------------|------------------|--------------------------| | Technology
blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | Power loss | Net power Loss
Compensation
and flexibility
can be
discussed to
increase | Level of integration | None | Partial | Fully | | Overall
process | compensation | positive commercial and technical impacts. Ex: Enabling dual oxy and air combustion. | Penalty of retrofit (%) | 30 | - | - | | | Process
integration | Load change
flexibility, start
up, shut down
and partial load
behaviour of all
components
which are | Minimum Load (%) | - | - | 70 per train | | | | | Emergency shutdown behavior | - | - | No impact | | | | highly
dependent on
each other | Load change velocity (%) | - | - | 50% of non capture plant | # Pre-combustion – detailed expected evolution of validation status | | | | Current va | lidation | 1 | | | | Expected | by 2012 | 2 | | |--|------|---------|------------------------|----------|----------------|---------------|------|---------|------------------------|---------|----------------|---------------| | | Coal | Lignite | Petcoke/
Anthracite | | Natural
gas | Off-
gases | Coal | Lignite | Petcoke/
Anthracite | | Natural
gas | Off-
gases | | Air Separation Unit | | | | | | | | | | | | | | Fuel handling | | | | | | | | | | | | | | Gasifier | | | | | | | | | | | | | | Reformer | | | | | | | | | | | | | | Dust removal | | | | | | | | | | | | | | CO shift | | | | | | | | | | | | | | CO ₂ capture and desulphurization | | | | | | | | | | | | | | H2 coproduction | | | | | | | | | | | | | | H2 gas turbine | | | | | | | | | | | | | | CO ₂ purification | | | | | | | | | | | | | | CO ₂ compression | | | | | | | | | | | | | | Process integration | | | | | | | | | | | | | ## Scope of technology blocks for Pre-combustion – capacity and performance (1/5) | Toobhology | | | | Performances | | | | |---------------------------|--|---|--|---|------------------|---|--| | Technology
blocks | Scope Scope | | Parameters Proven performance | | Expected by 2012 | Flagship
demo | | | Air
Separation
Unit | Cryogenic
train | Single train integrated with F class turbine proven. Air and N2 integration levels determine ASU concept and overall efficiency. Development required for higher distillation & Oxygen pressure levels. Fuel independent. Integration of compressor drive system to be considered | Capacity (t/d) 0% - 50% air side integration considered. Higher levels of integration feasible. | (t/d) 0% - 50% air side integration considered. Higher levels of integration | | Demos will stick to single train concept. (2 or 3 turbines on one ASU - not proven. But is a matter of RAM vs, CAPEX. Start up part load may be an issue) | | | | Membranes | Membranes ASU assumed not available in Flagship demo timeframe | | | | | | | Fuel
handling | Fuel drying,
grinding and
mixing | Fuel pre-treatment particularly for fuels with high water content or difficult to grind to size required for feeding to gasifier (lignite, biomass). For more variable fuel feed online fuel analysis required. | Capacity
(t/d) | WTA pilot
plant 600t/d
DWT test
plant for
lignite | 600t/d | 2500-7000
t/d
Improvement
in integration
to enhance
efficiency
61 | | ## Scope of technology blocks for Pre-combustion – capacity and performance (2/5) | Technology | | | Performances | | | | | |--------------|--|--|----------------------------------|---|------------------|---|--| | blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | Fuel dry
feeding | Relevant for high overall efficiency. | Capacity
(t/d) | 2,500-7,000 | - | 2,500-7,000 | | | | | Energy and cost optimized system targeting high carbon conversion rate and CO shift. | Capacity (t/d) | | 7,000 | - | | | Gasifier | Gasifier Optimized for CCS Gasifier Optimized for CCS Very fuel specific - e.g. ash melting point, ash content, reactivity. Steam integration to be adapted in CCS layout. Operational flexibility for capture and non capture mode. | melting point, ash content, reactivity. Steam integration to be adapted in CCS layout. Operational flexibility for capture | Type | raw gas cooling or full quench - both not 100% suited for process with CO-shift | - | dry feed
system with
partial or full
water
quench
optimised
for
efficient
integration of
CO shift | | | Reformer | | n. Integration in water steam t and very IRCC specific | Integration in Water Steam Cycle | | | | | | Dust removal | Relevant are pri
CAPEX, O&M a
Availability issue | asifier concept. eramic filter or metal filter. marily availability, then nd pressure loss. es with some types. mercury capture may gain | Operating temperature (°C) | ~250-300 | - | ~250-300 | | ## Scope of technology blocks for Pre-combustion – capacity and performance (3/5) | Technology | | | Performances | | | | | |--|--|--|---|--|------------------|---|--| | blocks | Technology Scope | | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | CO shift | production and size for F-class proven. Sour or on concept for con | integration of steam
steam / water demand.
engine supply is
sweet shift - depending
lesulphurization and
delivered CO2. | | Proven in full scale in chemical industry, advanced integration to be proven | | Advanced thermal integration concepts to be proven. | | | CO ₂ capture
and de-
sulphurization | Can be combined with desulphurization or separate. Based on absorbtion. Membrane processes not expected to be commercially available until 2015. Optimized for IGCC application (heat integration, pressure levels). Rest sulphur content dependent on GT requirements and NOx limits (SCR fouling from SO3 based aminosalts). CO-Shift requirements relevant. Some fuel specific aspects: sulphur content, chlorides, hazardous compounds. | | MDEA, RECTISOL, Selecsol, Genosorb, (other processes not expected in full scale) Optimization with regard to heat requirement, presure loss, consumtion of catalysts, aux power. Quality of delivered CO2 | Selecsol, enosorb, (other processes not expected in full scale) Optimization with regard to heat requirement, presure loss, consumtion of catalysts, aux cower. Quality of | | Integration in IGCC to be proven | | | H2
coproduction | Avoid N2 and steam feed into the fuel gas stream. Adapted fuel feed system. Meet pressure requirements for H2 process. | | downstream for
99,999% purity
PSA required -
proven | | | Very few references based on solid fuels | | ## Scope of technology blocks for Pre-combustion – capacity and performance (4/5) | Technology | | | Performances | | | | | |---------------------|--|---|--------------|---|------------------|--|--| | blocks | Technology | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | H2 GT | F class
gas
turbine | Syngas and hydrogen rich gases are diluted with waste nitrogen and/or steam to comply with combustion requirements. High dilution levels have been proven already in the nineties. However there is some rationale for reduced dilution levels in terms of efficiency and cost. Optimization efforts are under way for high availability, efficiency, low NOx | - | small GT
<50 MW are
proven with
Hydrogen
contents up
to 80%.
F-class
engines are
proven with
dilution. | - | Modern higly
efficient F-
class
turbines
>300 MW | | | CO2
purification | hand and re
train and tra
infrastructul
major issue
technology,
regard to re
oxy-fuel and
should be e | Depends on CO2 capture process on one hand and requirements from compressor train and transport and storage infrastructure on the other hand. Can be a major issue depending on solvent technology. Uncertainties with regard to regard to requirements. Topic is common to oxy-fuel and post-combustion. However it should be easier to comply in precombustion with upstream purification in place. | | According to ENCAP WP 1.1 requirement s are fulfilled in percombustion capture | - | Final purification could be required for some contaminant s according to CO2 specification | | ## Scope of technology blocks for Pre-combustion – capacity and performance (5/5) | Tachnalagy | | Performances | | | | | | |-----------------------------|--|--|--|------------------|---|--|--| | Technology
blocks | Scope | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | | CO ₂ compression | Multi stage compression. Pressure ratio validated. Considerable upscale required (factor 3-4). Plant integration of intercooling. Corrosion resistance. Control concept. Drive concepts other than electrical to be considered. Topic is common to oxy-fuel and post-combustion. However it should be easier to comply in pre-combustion with upstream purification in place | Pressure level
100 - 200 bar | Weyburn project:, single train multi shaft compressor, ebd pressure 187 bar, 60000 m^3/h, 13,5 | - | Single train
compressor,
high
efficiency,
high
availability,
low O&M. | | | | Integration | Overall plant not be scaled below 350 MW net - has to match F-class gas turbines. Optimised balance of degree of integration and redundancy to achieve low life cycle cost and high availability. Covers multiple areas such as heat, N2, air, steam | Must not be judged on basis of net efficiency, but on LCC. | Proven in full scale in chemical industry | - | Target of the entire Flagship program is to reduce risk premium in EPC and thus foster market penetration | | | ## Scope of technology blocks for efficiency improvement – capacity and performance (1/3) | Technology | SCONE II | | Performances | | | | |-------------|--|---|---|--------------------|------------------|------------------| | blocks | | | Parameters | Proven performance | Expected by 2012 | Flagship
demo | | | Overall efficiency could be | | Turbine inlet pressure (bar) | 275 | 350 | 350 | | Steam cycle | parameters | by increasing steam from category C to | Temperature
Main steam/Reheat (°C) | 600/620 | 700/720 | 700/720 |
| | Category D | | Efficiency (% LHV) | 46 | 50 | 50 | | Fuel | Increasing efficiency would permit to decrease fuel consumption and | | Coal consumption | Х | 95% X | 95% X | | combustion | | 2 emissions | CO ₂ emissions | | 95% Y | 95% Y | | | Pulverized coal | | Gross power (MWe) | | 1,000 | 500 | | | Boiler efficiency | | Efficiency (%) | 95 | ? | ? | | | Water wall Higher temperature into steam path requires new materia for enclosing walls, | | 100,000 hours of creep rupture strength (Mpa) | 90-100 | 90-100 | 90-100 | | Boiler | Superheater | heating surfaces,
header and piping
(e.g. Ni based alloy
materials). Tubes | Resistance against high temperature corrosion | | | | | | Reheater | made out of ferritic or
austenitic steel
cannot withstand
higher temperature | Resistance against steam oxidation | | | 66 | ### Scope of technology blocks for efficiency improvement – capacity and performance (2/3) | Toohnology | Technology/ | | | Performance | S | | | | |----------------------|---------------------|--|-----------------------|--------------------|------------------|------------------|--|--| | Technology
blocks | Main function | Scope Parameters | | Proven performance | Expected by 2012 | Flagship
demo | | | | Boiler | Material
welding | Welding of pipes
with different
material grade
(P92, T24,
A617) | Welding qualification | | | | | | | | Reaction | Reaction | Gross power (MWe) | | 1,000 | 500 | | | | | HP module | e High steam temperature require Ni-based Alloy for inner casing and rotor. Rotor | | | | | | | | Turbine | IP module | with different material grade is required | | | | | | | | | HP bypass valve | | | | | | | | | | Start-up valve | High steam temperature require the use of Ni-based Alloy is needed | | | | | | | | | Stop valve | | | | | | | | ## Scope of technology blocks for efficiency improvement – capacity and performance (3/3) | Tashmalasu | Technology | | | | Performance | S | | | |----------------------|---|--|--------------------|-------------------------------|---|--------|--------|--| | Technology
blocks | SCODE | | Proven performance | Expected by 2012 | Flagship
demo | | | | | | Ove | erall plant | Gross po | wer (MWe) | | 1,000 | 500 | | | | Material identification | High steam temperature | | | | | | | | | Material qualification | requires new
material for main
steam path and hot | | ours of creep
rength (Mpa) | 90-100 | 90-100 | 90-100 | | | Plant | Piping design | reheat steam path. | | | | | | | | | HP bypass valve | Using Ni-based
Alloy is needed | | | | | | | | | Piping flexibility | High steam temperature and pressure require high thickness Ni-based Alloy material. Flexibility must be taken into account piping routing | | | | | | | | | Plant layout | High cost Ni-based | alloys requi | re optimisation
materi | n of the plant layout to limit the use of those rials | | | | | | Process integration Process integration Load change flexibility, start up, shut down and partial load behaviour of all components which are highly dependent on each other. Full integration required | | Cold | | | 5 | | | | Overall
process | | Start up
length
(hours) | Warm | | | 3-4 | | | | | | | Hot | | | 2 | | | # Main technology options to transport CO₂ captured in power plants #### CO₂ transportation #### Onshore pipelines - Already operational (>3,000 km worldwide, mainly in the US for EOR) - CO₂ pipelines very similar to existing natural gas pipelines - CO₂ transported in supercritical phase (100-150 bar) - Densely populated area deployment issues #### Offshore pipelines Offshore pipeline technology operational, as large natural gas pipelines have been built at depths over 2,000 meters #### Shipping - Comparable to ship transportation of liquefied petroleum gas (LPG) - 4 small CO₂ ships already active, transporting liquefied CO₂ for food usage - Limited capacity #### Rail/truck tankers - Already operational (CO₂ for beverage) - Not considered as attractive option for large scale transport: - Costly - Non compatible with GHG reduction goal - Very limited capacity #### Pipeline transport process explanation Description - CO₂ is compressed over supercritical pressure (i.e. 75 bars), generally up to 100 to 150 bars - Compression also increases temperature to about 150°C - Cooling needed before transport - Optimal CO₂ state is supercritical - Minimizes volume - Most "fluid" state: minimizes friction losses - Within pipelines, friction causes pressure loss: 4 to 15 bars per 100 km in most conditions - However, for large diameter pipelines, losses are limited and should not require booster stations - Weyburn (14 inches) loses 7 bars per 100 km - In normal conditions, larger pipelines should have limited losses Additional compression may be needed for storage, depending on formation characteristics and CO₂ usage (e.g. EOR) #### Significant CO₂ pipelines already exist | Pipeline | Location | Operator | CO ₂ flow
(Av. 000 t / d) | Length (km) | Year
finished | Origin of CO ₂ | |--------------------------|-----------------|---------------------------------|---|-------------|------------------|---| | Cortez | USA | Kinder
Morgan | 53 | 808 | 1984 | Mc Elmo Dome (largest known natural accumulation of pure* CO ₂) | | Sheep
Mountain | USA | BP Amoco | 26 | 660 | - | Sheep Mountain
(smallest CO ₂ source field serving
the Permian Basin) | | Bravo | USA | BP Amoco | 20 | 350 | 1984 | Bravo Dome
(natural CO ₂ source with
225 Bn m3 reserves) | | Canyon Reefs
Carriers | USA | Kinder
Morgan | 14 | 225 | 1972 | Shell Gas plants
(natural gas processing plants) | | Val Verde | USA | Petrosource | 7 | 130 | 1998 | Val Verde Gas plants
(purification operations at 4
natural gas plants**) | | Bati Raman | Turkey | Turkish
Petroleum | 3 | 90 | 1983 | Dodan Field
(natural resource of carbonates) | | Weyburn | USA &
Canada | North Dakota
Gasification Co | 5 | 328 | 2000 | Gasification plant
(Synfuel Plant, which manufactures
synthetic natural gas from lignite) | | Snohvit | Norway | Statoil | 2 | 160 | 2006 | Gas plants (purification operations) | Note: *98% purity level; **This CO₂ contains H2S contamination and is thus only suitable for use in sour gas fields Source: Statoil, Sonatrach, IPCC, IEA GHG, DTI, DOE, L.E.K. Analysis #### **Pipeline construction process** #### **Preparation** #### Pipe welding / coating / bending #### Completion - Pipeline itinerary is planned and permits granted - Right of way is cleared and terrain prepared - Pipe sections are brought along the pipe route - A trench is excavated (generally 1m deep) - Pipes are welded along the pipe route - Coating is applied at the end of the pipes - Pipeline is bent to match geographic characteristics of the route (hills, curves, etc) - Pipeline is lowered in the trench - Trench is filled and vegetation restored - For offshore pipelines, pipes are welded to the end of the pipeline on a barge, then lowered down to the seabed as the barge advances • Process well-mastered, potential issues in densely populated areas #### Technical aspects of pipeline CO₂ #### **Materials** - With appropriate CO₂ drying and purification, regular carbon steel can be used - Stainless steel can be used in some specific pipe sections to avoid corrosion #### Pressure - Natural gas is generally transported around 90-100 bars in large "backbone" pipelines (lower in small distribution pipelines) - Pressure range is comparable to what would be required for CO₂ transport (100-150 bars) #### **Monitoring** - Pipeline monitoring consists in supervision by personnel (on the ground or by air), by metering devices (pressure, temperature, etc) and periodic inspection by robotic "pigs" - Comparable for CO₂, with possible increase in frequency depending on local regulations Equipment and processes very comparable to natural gas pipeline transportation #### **Transport processes explanation** #### Description - Liquid CO₂ (-50°C and 7 bars) is temporary stored in tank to align continuous capture with discrete flow of ships - Liquid CO₂ is charged to the ship with pump adapted to high pressure - Liquid CO₂ is transported in ship - Heat transfer from the environment through the wall of the tank will boil CO₂ and raise pressure - Necessity to refrigerated this gaseous CO₂ to liquefy it - Return to loading terminal with tank filled with dry CO₂ gas - Special offloading technology is developed for safe on- and offshore operations - Unloading of the liquid CO₂ in temporary storage or directly on underground storage site - Additional compression may be required #### Technical aspects of CO₂ transportation – ships | | eristics of ship
sportation | Comments | |---|---|---| | CO ₂ phase and purity requirements | Liquid state at -50°C and 7 bars | Comparable to semi-refrigerated LPG ships, but unlike large LNG tankers, which are around -160°C and atmospheric pressure | | Maximum ship capacity | 230,000 tonnes
in a 200,000 m3
supertanker | This
would only cover between 20 and 25 days of CO₂ from
one high-efficient 800MW coal plant | | Technical
maturity of ship
transport | 4 active ships
(20,000 m3)
Comparable to LNG
tankers | 4 small ships are in operation today, bringing food-grade CO₂ from plants to terminals in consuming regions Latest LNG tankers carry over 200,000 m3; the same yards could build CO₂ tankers | | Construction timing of a ship | 2 years for large tankers | Building time estimated between 1 and 2 years depending on ship size (closer to 2 years for supertankers) | CO₂ transportation ships built on the model of LPG tanker #### Depleted oil and gas field storage process explanation Schematic drawing of a depleted oil/gas field CO₂ storage site (In Salah project) Depending on acceptable injection rates and field characteristics, more or less injection wells will be required Site preparation and monitoring are particularly important for depleted fields, because oil production and abandoned wells can have created leakage risks #### **EOR/EGR** process explanation Schematic drawing of an EOR system (followed by permanent storage) using CO₂ CO₂ is injected in a specific well, separated from the oil extraction well. Minimum optimal depth of the field is about 800m for CO₂ to remain in supercritical phase (natural earth temperature above 31°C at that depth). Oil production well CO2 injection well recycled CO. **CAPROCK** additional miscible oil CO. zone recovery Part of the CO₂ stays in the oil formation, the rest being re-extracted with the oil and partly recycled. Quantity of CO₂ Quantity of CO_2 staying in the formation depends on CO_2 and oil characteristics (20%-70%). #### 2 EOR mechanisms: - CO₂"chases" the oil by flooding the formation - In optimal temperature and pressure conditions, part of the CO₂ also dissolves in the oil (miscible zone), making it more fluid. #### Deep saline aquifers storage process explanation Schematic drawing of Sleipner Utsira Formation deep saline aguifer storage site Significant uncertainty exists on the share of aquifer volume that can be filled with CO2 (between 2 and 70% estimates), because the speed and importance of CO2 dissolution and precipitation is not yet well known. A deep saline aquifer is a permeable sedimentary rock formation saturated with water. Depth is generally between 800m and 3 km. Thickness and geological characteristics of aquifers (in particular permeability, which defines how "easily" CO2 can enter) are highly site specific. ## Scope of technology blocks for storage (1/19) | Technology Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---|------------|--|---|---|-------------------------|---|-------|---| | Basinwide Screenin
Outcome: ranked lis | | age sites; ident of data and knowledge gaps | | | | | | | | Identify
sedimentary basin,
stratigraphical
sequence | | | Having access
to data that
allows an
evaluation of | Tools proven and in common industry use. Adapted | J | procedures | | but
derestricted
data access
(e.g. | | Compile DATA | | regulatory constraints; identify data | the principal components of a storage system and preferably a | workflows are emerging at a project level but require peer review and | | for each
flagship demo
Motivates the
funding of the
AQUACO2 | | Norway,
Canada) is
a
prerequisite
for | | Screen for
STORAGE
PROSPECT | | faults & fractures, cap rock, reservoir, | ranked assessemt of storage sites within a bsain. | alignment to
move to
standardised and
accpeted | | project
proposal
under
assesment by | | screening
activities
beyond
Flagship | | Screen for
STORAGE
SYSTEM | | pressure, fluids, mineralogy, legacy wells, sorrounding ressources, pottable aquifers, surface features | William a bodini. | practices (e.g. as
in reserves
assessment for | | EU
commission | | pgm.
Restricted
data access | | Storage System INTERACTION | | Define the storage system in the context of other economic interst (Hydrocarbons/minerals), potable water, biosphere/marien biosphere, atmosphere (environmental, HSE, population) | | petroleum and
minerals) | | | | delays CCS
implementa
tion, and
increases
project risk. | | Shortlist of potential storage sites | | Rank potential storage sites against capacity, injectivity and life-cycle containment criteria and demonstrate viable linkage to source | | | | | | | ## Scope of technology blocks for storage (2/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |------------------------------|--|---|--|--|---|--|-------|--------------| | Site Maturatio | n (preferred sites) | | | | | | | | | | DATA avalibility is a key issue for all activities below | | Confirm that the storage sites (s) is large enough to | Adapted workflows
are emerging at a
project level but | | | | | | | | Evaluation the primary and ultimate sealing capacity of cap rock for CO2 | hold full life-cycle CO2 volumes. Sustained injection rates over the life-time of the project can be achieved. Model and predict distribution of CO2 in the subsurface and demonstrate | require peer review and alignment to move to standardised and accepted practices. Need to improve capability to predict caprock properties/continuity in areas with sparse data (charateristic for | Improved industry capability to evaluate cap rock properties and predict sealing potential an lateral continuity | Focus data
acquisition
strategies on
improved
undesrtanding
of cap rock
properties and
begin shared
database | | | | | capability to model
CO2 flux through
faults and fractures | Assessment of safe operation pressure envelope including safety margin for fracture propagation pressure, fault reactivation pressuree, fault valving pressure and seal capillary entry pressure which govern maximum safe bottomhole injection pressure | credible
mechanisms for
long term
containment. | many aquifers). Need to be able to build a complete well model describing the wellbore integrity and flux rates. Reactive flow: Need modelling tools that fully couple all processes or can | Alignment of peer
reviewed work flows.
Geomechanical
capabilities become
an integral part of
project evaluation | Focus data
acquisition
strategies on
improving
geomechanical
modelling
capability | | | | (existing wells) | model; numerical
model of wellbore
geomechanics;tools
to assess integrity of
old/abandoned wells | Identify all old wells, location and condition of wells. Review well completion & abandonment reports, surveys, cement practice & zonal isolation. Summarise basin-wide well failure data (frequency and causes). Identify potentiall to re-enter to repair or abandon old wells. | | interface to specialised reactive flow modelling tools (e.g. Petrel, PVTsim which supply input to flow models) | Industry capability to
build full wellbore
model for integrity
and to incorporate
CO2 fluw rates into
risk project
asessement | Test emerging modelling capability and acquire real data to mature capability further. | | | ## Scope of technology blocks for storage (3/19) | Technology
Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |------------------------------|------------|--|---|--------------------------|---|--|-------
--------------| | | systems | and subsequent storage capacity including assement of structure, distribution of rock prpoerteis, flow behaviour and trapping mechanisms (single phase CO2, dissolution, residual trapping and mineral trapping) | storage sites (s) is large enough to hold full life-cycle CO2 volumes. Sustained injection rates over the life-time of the project can be achieved. Model and predict | 3 3 1 1 1 1 1 1 1 | | Quantification of
storage
redundancy
requirement and
CO2 storage
impact on regional
aquifers | | | | Normal flow | systems | plume migration with time within
primary reservoir and model
migration within secondary
containment system as part of | in the subsurface and demonstrate credible mechanisms for long term containment. | to build a complete well | Alignment of
peer reviewed
work flows | Defining key sensitivities that constrain plume migration and pressure modelling. Publishing workflows for operational and extended time scales for modelling. | | | ## Scope of technology blocks for storage (4/19) | | | | Consolity and | | | | | | |------------------------------|-----------------------|--|---|-------------------------------|--------------------------|--|---------|--------------| | Technology
Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | | Reactive flow | Standard industry | Predictive modelling of time | Confirm that the | Adapted workflows | Emerging consensus | Assess for reactive | | | | (CO2 + any | systems need | dependent processes and their | storage sites (s) | are emerging at a | on key reactive flow | flow issues prior to | | | | contaminants) | integration with | impact on flow, capacity and | is large enough | project level but | issues and in which | site selection and | | | | | emerging modelling | containment (chemical and | to hold full life- | require peer review | geological settings | acquire data during | | | | | codes/databases to | physical rock-fluid and fluid-fluid | cycle CO2 | and alignment to | these may be | field demo | | | | | handle complex | interaction) | volumes. | move to | significant. Improved | operation and post- | | | | | geochemical/geomec | | | standardised and | interfaces between | operation phase to | | | | | hanical processes. | | | accepted practices. | flow modelling | validate reactive | | | | | Lab experiments with | | over the life-time | | simulators and | flow components | | | | | critical liquids at | | | capability to predict | specialised modelling | | | | | | operating conditions. | | | caprock | tools. | | | | | Diffusion | Standard industry | Establish mechanisms and rates | | properties/continuity | Alignment of peer | Focus data | But | | | | systems | | | in areas with sparse | reviewed work flows. | acquisition on cap | cores | | | | | | | data (charateristic for | • | rock cores and | missing | | | | | | | many aquifers). | availabe for diffusion | analysis | | | | | | | | Need to be able to | measurements and | | | | | | 0 | | | build a complete well | | | | | | Injectivity | Standard industry | | | model describing the | | | | | | | , | , , , | | wellbore integrity | reviewed work flows. | | | | | | | | | and flux rates. | Increased data | | | | | | | asessment of critiacl pressures, | | | available on injectivity | | | | | | | reservoir heterogeneity, | | modelling tools that | into aquifers | | | | | | required for some | compartmentalisation, brine | | fully couple all | | | | | | | projects | displacemnet, reactive flow and wellbore imparement. | | processes or can interface to | | | | | | | | Engineered system: Sustained | | specialised reactive | | | | | | | | injectivity requires high up-time | | flow modelling tools | | | | | | | | for compression/pumping | | (e.g. Petrel, PVTsim | | | | | | | | equipment, pipeline, capture | | which supply input to | | | | | | | | plant | | flow models) | | | | | ## Scope of technology blocks for storage (5/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |----------------------------------|--|---|---|--|---|---|-------|--------------| | Evaluate
Leakage
Potential | | | Confirm that the storage sites (s) is large enough to hold full life-cycle CO2 volumes. | methodologies are
emerging at a
project level that | Alignment of peer reviewed work flows. Consensus on main principles that | demonstration project to include | | | | | Adapted systems are
emerging but as yet
immature | Iterative assesment
of major leak
features that can be
avoided through
design and | Sustained injection rates over the life-time of the project can be achieved. Model and predict distribution of CO2 in | consensus to move | underpin robust risk
assessment.
Emerging regulatory
frameworks. | life-cycle
containment risk
assessment
including risk
mitigation strategies | | | | Features | | identification of
residual risk to | the subsurface and demonstrate credible | | | and clear linkage to
monitoring and | | | | Events | | design a monitoring and verification plan | mechanisms for long term containment. | | | verification programme. | | | | Processes | | and mitigation
strategy. Agree
performance with
regulator. | | | | | | | # Scope of technology blocks for storage (6/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |--|---|---|--|--|--|---|---|---| | Define Storage
License
Parametres | | Identify a site or a combinatior
sites which can contain the full
life-cycle project CO2 volume. | boundaries of the storage complex | Within Europe all current activities operate license exceptions from existing | Increased project base with agreed | Documented and published criteria for regulatory | | | | containment | Interplay
between
Regulations
(emerging) | Define and agree vertical and
lateral boundaries for a
licensed containmnet complex
wirth regulatory authorities | and agreeing operating performance with regulatory bodies | regulations on a project-by-
project basis Only some of
these projects have defined
lateral and vertical | emerging national | boundaries for
each flagship | | | | Separation | and storage
system
modelling | Define spatial and temporal separation margins between CO2 plume and identified leak features or sensitive zone (e.g. potable water, other licenses or national boundaries) | | boundaries prior to commencement | regulations | demo in order to
establish first
regulatory
practice | | | | Define operation volume Define operation pressure | | Agree licensed volume and pressure with regulator. | | | | | | | | requirements | industry
systems
combined
with standard
surface
monitoring
technologies
and emerging | Demonstrate geological storage of CO2 is effective and poses no unacceptable HSE or economic risk. To be effective this has to be against an agreed baseline. Setting external conditions informed by a combination of risk assessment, regulatory requirements and external stakeholder expectation (NGO, public). | Defining the baseline work and the monitoring & verification programme, including thresholdts for monitoring and inventory. Set the criteria for closure and agree post-closure monitoring with the regulator. | Not yet consensus on definition of a baseline for CO2 M&V. Extensive and mature toolkit exists, but no standards for M&V requirements (accuracy, areal extend, frequency)'. Criteria for definition of post-closure phase
poorly defined. Different M&V requirements for storage security, HSE and ETS credit. | Alignment of baseline definition of storage system, particularly around threshold. Need for consensus regarding the key parameters for monitoring and verification | system approach, showing clear linkages to risk assessment, containment, safe operation | Ok for
weismic,
wellbore
and
petrophysi
cal, not for
surface
baseline &
CO2
monitoring | But need integratio n with definition of threshold s and project economic s | ### Scope of technology blocks for storage (7/19) | Technology Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---------------------------|--|--|---|--|--|--|-------|--------------| | Site Testing | | | | | | | | | | Site Maturation Pl | Site Maturation Plan | | | | | | | | | Data acquisition | As per 'Evaluate
Storage Features' | Iterative loop of site maturation | Confirm that the storage sites (s) is large enough to | Adapted workflows are emerging at a | Lack of subsurface data will limit maturation of | Will take place
on data rich | | | | maturation
planning | above | activities to
close data gaps
and mature
prefered site(s) | hold full life-cycle CO2 volumes. Sustained injection rates over the life-time of the project can be achieved. Model and predict distribution of CO2 in the subsurface and demonstrate credible mechanisms for long term containment. | project level but
require peer review
and alignment to
move to
standardised and
accepted practices. | some potential sites by 2012 | sites/areas or
sites with
accelerated
data acquisition
and appraisal
activities | | | | Baseline surveys | (MMV) | | | | | | | | | geosphere | Standard industry | Establish initial | Determine the parameters | Tools exist today | Application of tools | Agreed baseline | | | | hydrosphere | systems combined with standard surface | conditions for all storage system | and thresholds of measurements per domain | for general application, but | modified to CCS activities. Convergence | executed and
shared for all | | | | biosphere | monitoring
technologies and | components and map fluxes | and to establish the project reference baseline which | CCS thresholds
and parameters | on thresholds and key parameters, and | flagship
projects; | | | | atmosphere | emerging technologies
(e.g. marine biosphere) | (if any) for each | will be used for future performance validation. | have yet to be
established | recognition of technology gaps. | matching
thresholds and
parameters to
regulator
expectations | | | ### Scope of technology blocks for storage (8/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum perform) | Tools | Work
flow | |--|--|--|---|---|---|---|------------|--------------| | Storage site and integration | d CO2 source | ability to model vari | ability | | | | | | | CO2 flow stream variability | # CHECK | CO2 output (rate | Constraining the time dependent flow rate of CO2 | # CHECK | # CHECK | # CHECK | | | | CO2 composition | # CHECK | storage facility,
including flow | Constraining the time dependent composition of CO2 and contaminants | # CHECK | # CHECK | # CHECK | | | | CO2 phase
behaviour | # CHECK | regime, phase
envelopes,
compression/pumpi
ng and operating
envelope. | Establishing the operating envelope for transport, compression and storage | # CHECK | # CHECK | # CHECK | | | | Existing wells | | | | | | | | | | survey/monitor
for leakage &
corrosion | Existing technologies for live/suspended wells with a need for more sensitive and diagnostic tools for wellbore integrity. Lack of full wellbore modelling technology. | Identify any wells
or zone that might
be impacted by
injected CO2 and
establish a
workover/abanonm
ent plans | Establish a basis for evaluation of leakage potential from old wells. Setting standards for remediation and/or abandonment. | Toolkit for
live/suspended
wells | Numerical modelling capability for full wellbore and improved downhole diagnostics for wellbore integrity. Emerging consensus on whether to remediate poorly abandoned wells or design site to avoid plume contact. | Gather data that will support full wellbore modelling and provide reference welbore integrity data. Need to share experience between demonstration projects (i.e. through IEA Wellbore Integrity network) | | | | remediate or
abandon | Existing remediation and abandonment standards require updating for CCS | | | Industry
standards for
production
/injection
operations
(hydrocarbon
development) | Revised standards for
CCS activities
adressing extended
storage life requirement | Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | For
CCS | | ### Scope of technology blocks for storage (9/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | | | |--|--|---|---|---|---|--|--------------------------|--|--|--| | | Baseline Monitoring and Verification Identify M&V parameters and thresholds for each domain for a specific storage system | | | | | | | | | | | HSE | Standard industry systems combined with standard | Safeguarding the environment, population and work force | Agree with regulators the parameters and thresholds and | | | MV programme agreed with | | | | | | Containment | surface monitoring
technologies and
emerging
technologies (e.g. | Setting performance standards and operating practices with regulatory bodies | frequency of measurements. | Tools exist today
for general
application, but | Application of tools
modified to CCS
activities. | regulator. | | | | | | Verification | marine biosphere) | Assuring credit under the EU ETS and any national system. Verification that CO2 storage operation does not expose operator to external liability (e.g contamination of ground water, other operator's hydrocarbons) | | CCS thresholds
and parameters
have yet to be
established | Convergence on
thresholds and key
parameters, and
recognition of
technology gaps. | amongst all
ZEP
demonstrators | For free
phase CO2 | | | | | Forward Model | Leakage - 'what ifs' | | | | | | | | | | | Atmosphere Biosphere Hydrosphere Geosphere | Standard industry
systems | Modelling plume migration
beyond primary seal to
identify leakage pathways to
other domains. The intent is
to mature M&V programme
and demonstrate storage
system integrity. | Model and predict
distribution of CO2 in
the subsurface and
demonstrate credible
mechanisms for long
term containment. | project level but | Alignment of peer reviewed work flows that demonstrate leakage pathways and secondary containment capacity (storage security) | Forward model leakage beyound the primary containment to fully identify leakage pathways and so mature M&V | but not for whole system | For primary containm ent but not for entire storage system | | | | | | | | | Security) | strategy. | | 0.7 | | | # Scope of technology blocks for
storage (10/19) | Technology
Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---|---|--|---|---|--|--|---|--| | Economical
screening of
MMV
programme | Work
process | Place economic
constraints on M&V
programme in the
operation phase and to
agree with regulator
structures for M&V post-
closure | Site-specific
requirements against
corporate screening
criteria and project
economics | Existing industry approches to economic screening require adaptation to extended CCS project time scales and to emerging EU and national regulations. | Formative
screening models
at a project-by-
project level
constrained by
emerging
regulations | Systematic
economic
screening, shared
through IEA
networks | | | | Regulatory
MMV
requirements | Regulatory
dialogue
and
approval | Define MMV plans with
regulators (features,
accuracy, time) for all
phases of project | Capability to work with regulators to shape regulatory requirements for MMV incorporating and adapting experience from active CCS and other relevant projects (e.g. natural gas storage, waste water injection) | Exist for oilfield operations but not matured for CCS | Adapted procedures to fit CCS and as licensed by national regulators deriving monitoring guidelines from CO2 Storage Directive | Develop common
approach to future
CCS project MMV
requirements based
on experience from
flagship programme
demos | | | | Define
requirements
for forward
modelling
based on MMV
data. | Work
process | Agree long-term modelling programme supported by M&V data that demonstrates performance (storage security) against agreed baseline, to guide future choice of tools and frequency of measurements. | Model and predict distribution of CO2 in the subsurface and demonstrate credible mechanisms for long term containment. | Modelling capability
proven today but
modelling capacity for
full storage system
limits capabilty | Increased modelling capacity and alignment on the requirement to model beyond primary containment | Forward model leakage beyound the primary containment to fully identify leakage pathways and so mature M&V strategy. | But
modelling
capacity
constrain | But only
sparsely
applied
to date | # Scope of technology blocks for storage (11/19) | Technology
Block
function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---|--|--|---|--|--|--|-------|--------------| | OPERATION | | | | | | | | | | | working to revised standards. Increased emphasis on material selection, cementing practices, zonal isolation and contracting and procurement standards | injection (and observation) wells
(well geometry, completion
intervals, materials | | Industry standards for production/injectio n operations (hydrocarbon development); emerging practices for CCS activities | Revised
standards for
CCS activities
adressing
extended
storage life
requirement | Review and update
corporate
standards for CCS
activities, providing
input for updated
regulatory
standards and
practices. | | | | Locate
injecton
wells +
patterns | | even distribution of CO2 in
subsurface, providing separation
distance from recognised leak
features and including
redundancy injection capacity to | the subsurface and manage pressure | Industry
standards for
production/injectio
n operations
(hydrocarbon
development); | Alignment of peer reviewed work flows/criteria for locating wells and defining injection patterns | Documented and
published work
flows/criteria for
each flagship demo | | | | | working to revised standards. | Minimise risk of CO2 migration outside containment system by remediating and/or abandoning old wells to a revised CCS standard | Workover and or
abandon existing wells;
assure integrity to
revised standards. | Industry
standards for
production/injection
n operations
(hydrocarbon
development); | Revised
standards for
CCS activities
adressing
extended
storage life
requirement | Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | | | ### Scope of technology blocks for storage (12/19) | Technology
Block
function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---|--|---|--|---|---|--|-------|--------------| | • | systems working to revised standards. | Drill and
complete
injection (and
observation)
wells to revised
CCS standards | Drill and complete wells to revised standards; acquire adequate baseline data to monitor life-cycle integrity. | Industry standards for production/injection operations (hydrocarbon development); emerging practices for CCS activities | Revised standards for CCS activities adressing extended storage life requirement | Review and update
corporate
standards for CCS
activities, providing
input for updated
regulatory
standards and
practices. | | | | Cement
integrity and
zonal
isolation | systems working to revised standards. | Demonstrate
wellbore
material and
cement integrity
and effective
zonal isolation | Assure cement integrity and zonal isolation to revised standards | Industry standards for production/injection operations (hydrocarbon development) - large variations in operating standards and practices resulting in variable but widespread well integrity issues | Revised standards for CCS activities adressing extended storage life requirement; revised regulatory requirements for contracting and procurement procedures for CCS activities (integrity assurance not cost driven) | Documented and
share cement and
zonal isolation
practices for each
flagship demo
through appropriate
networks | | | | | systems working to revised standards. | Maximise injectivity without compromising wellbore integrity | Clean-up the near well-bore region to: -optimise injection capacity -minimise well integrity problems -not compromise containment -condition the near well bore region for CO2 injection (if required) | Industry standards for production/injection operations (hydrocarbon development); emerging practices for CCS activities | Alignment of peer
reviewed practices and
work flows | Documented and share near-well bore clean-up practices for each flagship demo through appropriate networks | | | | | systems working to revised standards & potentially | activities within | Inject dense phase CO2 within licensed limits and across selected injection intervals | Capacity at the scale of existing demonstrator projects and within restricted operating envelopes | | Document and publish practices for each flagship demo | | | ### Scope of technology blocks for storage (13/19) |
Technology
Block
function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |---------------------------------|---|--|--|---|--|---|-------|--| | injection P + | Standard industry
systems working
within agreed
licensed limits | Maintain injection activities within the agreed operating envelope | Confirm and
maintain injection
within licensed
limits and across
selected injection
intervals | Industry standards for production/injection operations (hydrocarbon development); emerging practices for CCS activities | Alignment of
peer reviewed
practices and
work flows | Document and
share PT
management
practices for
each flagship
demo through
appropriate
networks | | | | input into
reservoir | Standard industry
systems adapted to
the variable
throughput from
different CCS
projects | Maintain CO2 flow within defined operating envelope | | | | | | | | | Standard industry
systems working
within agreed
licensed limits and
adapted to the
variable throughput
from different CCS
projects | control. Model near-wellbore effects. | | Emerging practices for CCS activities but not yet across a widerange of operating scenarios | Alignment of peer reviewed practices and | Selection of
demos across a
range of
operating
envelopes;
document and
share
subsurface CO2 | | Not
validated
for specific
demonstra
totr types
with highly
variable
throughput | | | Standard industry systems | to ensure en even distribution of CO2 vertically (i.e. in layered | Monitor injection intervals and plume migration/ pressure evolution within reservoir | Emerging practices for CCS activities but not yet across a widerange of operating scenarios | work flows | mangement
practices for
each flagship
demo through
appropriate
networks | | | ## Scope of technology blocks for storage (14/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum perform) | Tools | Wor
k
flow | |------------------------------|---|---|---|--|--|---|-------|------------------| | Lifecycle well | integrity assura | ance | | | | | | | | logging | industry
systems but
with more
sensitive and
diagnostic
downhole tools | period to identify
workover/mainten
ance
requirements | Utilise sensitive and diagnostic downhole tools for wellbore integrity, conduct numerical model of leakage for a full well bore; develop a statistical basis for the evaluation of wellbore performance | Standard industry logging capabilty but with limited capability/experience in modelling full wellbore integrity - including flux rates | Numerical modelling capability for full wellbore and improved downhole diagnostics for wellbore integrity. | Gather data that will support full wellbore modelling and provide reference welbore integrity data. Need to share experience between demonstration projects (i.e. through IEA Wellbore Integrity network) | | | | workovers | Standard industry systems working to revised standards. | Execute workover activities and mangage simultaneous operations (SIMOP's) | Workover and or abandon wells; assure integrity to revised standards. | Industry standards for
hydrocarbon development
and CO2 EOR; little/no
experience for CCS
activities | Revised standards for
CCS activities
adressing extended
storage life requirement | Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | | | | maintenance | Standard
industry
systems
working to
revised
standards. | well stock | Maintain existing well
stock and ensure
data quality to assess
integrity against
agreed baseline | Industry standards for
hydrocarbon development
and CO2 EOR; little/no
experience for CCS
activities | Revised standards for CCS activities adressing extended storage life requirement | Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | | | ### Scope of technology blocks for storage (15/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |-----------------------------------|--|--|--|---|---|---|-------|--------------| | near injection
end-life cycle | industry
systems
working within
agreed licensed | Determine
appropriate
number and
distribution of
wells to convert to
obsevation wells | Forward model plume distribution and determine appropriate wells to convert to observation wells | Adapted modelling workflows are emerging at a project level but require peer review and alignment to move to standardised and accepted practices; absence of regulatory definition of post-closure observation well standards | modelling issues and | Clarify and share license requirements/criteria for observation wells. Execute forward modelling prior to selection of abandonment/observation wells. Aquire data late injection period to modelling and selection. | | | | | industry
systems | Workover
selected wells
and convert to
observation wells | Workover and convert wells; assure integrity to revised standards. | Industry standards for hydrocarbon development and CO2 EOR; emerging experience for CCS activities | Revised standards for
CCS activities
adressing extended
storage life requirement | Incorporate experience to date from active demonstrator projects. Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | | | | abandon to
agreed
standards | industry
systems | | Abandon wells; assure integrity to revised standards. | Industry standards for production/injection operations (hydrocarbon development); | Revised standards for
CCS activities
adressing extended
storage life requirement | Review and update corporate standards for CCS activities, providing input for updated regulatory standards and practices. | | | # Scope of technology blocks for storage (16/19) | Technology
Block function | Technology | Scope | Capacity and Pe | | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |--|------------|---|-----------------------|---|---|-----------------------------------|--|-----------|--------------| | Storage
Closure | | and facilities leaving only rod (i.e. 30-40 years) or sh | | | | st-injection | monitoring may be | e require | d for as | | Define at end-
of-injection | | | | | | | | | | | CO2 plume position | | Estsblish reference against which future CO2 dense phase plume is to be held. Make full inventory of all | future
comparison. | at a project review and standard practices. modelling to processe
specialised tools (e.g. | orkflows are emerging t level but require peer d alignment to move to dised and accepted. Reactive flow: Need books that fully couple all es or can interface to reactive flow modelling Petrel, PVTsim which input to flow models) | of peer
reviewed
work flows | sensitivities that constrain plume | | | | 'baseline' for all
monitoring
parameters | | monitored parameters | | | | | | | | # Scope of technology blocks for storage (17/19) | Technology
Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |--|---|--|---|---|--------------------------------|--|-------|--------------| | | Standard industry systems need integration with emerging modelling codes/databases to handle complex geochemical/geomecha nical processes. Lab experiments with critical liquids at operating conditions. | behaviour and fate of
CO2 dissolved in brine.
Model 'what if' scenarios. | Use accumulated performance experience over 20-30 years for history matching and make predictions for the post- injection monitoring period as well as long term (100 to 1000's of years) | Adapted workflows are emerging at a project level but require peer review and alignment to move to standardised and accepted practices. Reactive flow: Need modelling tools that fully couple all processes or can interface to specialised reactive flow modelling tools (e.g. Petrel, PVTsim which supply input to flow models) | consensus
on key
forward | issues prior to
site selection
and acquire data
during field
demo operation
and post-
operation phase | | | | Define criteria
for operator's
obligations | Regulatory dialogue and approval | stabilisation criteria with regulators; i.e. when can | Define criteria
for containment
of CO2 within
storage system | Criteria for definition of post-
closure phase poorly defined.
Different M&V requirements for
storage security, HSE and ETS
credit. | | Obligations agreed with regulator. executed for all flagship projects; monitoring results shared amongst all ZEP demonstrators (e.g. through IEA Monitoring Network) | | | # Scope of technology blocks for storage (18/19) | Technology
Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |------------------------------|---|---|--|--|--|---|-------|--------------| | Observation wells | Standard industry systems working to revised standards. | Demonstrate wellbore
material and cement
integrity and effective
zonal isolation | Assure cement integrity and zonal isolation to revised standards | Industry
standards for
production/inj
ection
operations
(hydrocarbon
development)
; | Revised
standards for
CCS activities
adressing
extended
storage life
requirement | Clarify and share license requirements/criteria for observation wells. Execute forward modelling prior to selection of abandonment/observation wells. Aquire data late injection period to modelling and selection. | | | | Perform
regular MMV | | | | | Revised
standards for
CCS activities
adressing
extended
storage life
requirement | MV programme
agreed with regulator.
executed for all
flagship projects;
monitoring results
shared amongst all
ZEP demonstrators | | | | geosphere | Standard industry | Review and updfate with regulators MMV | Repeatedly determine | | | (e.g. through IEA Monitoring Network) | | | | hydrosphere | systems combined with standard surface | activities (features, | monitoring parameters at specified thresholds of | | | | | | | biosphere | monitoring
technologies and | accuracy, frequency) and storage | measurements per domain and compare to | | | | | | | atmosphere | emerging technologies
(e.g. passive seismic)) | performance & security against agreed baseline. | establish the project reference baseline for performance validation. | | | | | | ### Scope of technology blocks for storage (19/19) | Technology
Block function | Technology | Scope | Capacity and Performance (specification parameters) | Proven | Expected proven by 2012 | Expected for Flagship Demo (minimum perform) | Tools | Work
flow | |------------------------------|---|--|--|--|---|--|-------|--------------| | Post Closure
M&V | | | | | | | | | | CO2
containment
M&V | Simplified standard industry systems combined with standard surface monitoring technologies and emerging technologies (e.g. passive seismic)) | Define with regulators
and certification
agency need - if any -
for long term
monitoring to ensure
storage integrity and
collation of
documentation | Identify robust method
for scientific monitoring
over the following
decades | Some
procedures
emerging at
pilot sites | | | | | | Termination procedure | Standard industry systems working to revised standards. | Removal of all surface
and monitoring
equipment, including
any observation wells. | How to leave site | Exists in oil
and gas
operations | Revised
standards for
CCS activities
adressing
extended
storage life | | | | | Relinquishment | Regulatory dialogue and approval | Specification of when
and to what
specifications the
operator can return
license area to the
regulators | Hand-over of liability to regulator | | requirement | | | | #### Scope of technology blocks for storage – ECBM (1/4) | Technology Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum
perform) | Tools | Comm
ercial | Work
flow | |--|---|---|--|--|---|---|-------|----------------|--------------| | Pattern test | | | | | | | | | | | Evaluate
Enhanced CBM
production | 5 spot pilot | In mature CBM field, which is in decline, a new injector is drilled or producer converted into an injector to conduct a 5 spot pilot. Here the main objective is to enhance the methane production and postpone the decline of the field. The CO2 storage is a bonus. | Increase of methane production in producers | Technology to
conduct pilot
exists (Ref
pilots in San
Juan in 90s) | Commerci
ally
proven
after pilot
successful
ly
completed
in field
(ready for
scale up) | Successful pilot in
mature field (stop
decline in production
and ready for scale up) | | | | | CO2 storage in coal | • | A depleted CBM well is converted into an injector to test CO2 injectivity and storage potential of coal. The main objective is CO2 storage | Prove long-term injectivity of CO2: reduction in injectivty may mean less CO2 can be stored) | Technology to
conduct pilot
exists
(RECOPOL
pilot, etc.) |
Commerci
al concept
depends
on CO2
credits
and
regulation | Successful injection in
depleted field
(continuous injection at
acceptable rate and
ready for scale up) | | | | | Flue gas injection | lab
evaluation
followed by
5 spot test | The CO2 footprint of a CBM operation is largely due to the own use (fuel gas) for compression. Capturing the flue gas and usage for ECBM may be attractive option to reduce own CO2 at compressor stations. The effect of oxygen (in flue gas) on ECBM is unknown. Need better understanding before conducting field trails | Establish effect
of oxygen on
ECBM | not proven | Prove
concept of
flue gas
injection | Ready to conduct commercial field pilot + integration with compressor sites | | | | ### Scope of technology blocks for storage – ECBM (2/4) | Technology Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum
perform) | Tools | Comm
ercial | Work
flow | |---------------------------|-----------------------------------|---|--|--------|-------------------------|--|-------|----------------|--------------| | Upgrade facilities | | | | | | | | | | | well site | space for
CO2
equipment | If producer is converted to injector changes are required to well site | sufficient space, footprint | proven | | | | | | | prevention corrosion | | CBM gas already contains CO2, but now more CO2 can be | no corrision | proven | | | | | | | CO2 separator | standard
tech | expected in produced gas (low pressure sep) | efficiency
separation
process | proven | | | | | | | New Facilities | | | | | | | | | | | CO2 injection | standard
CBM
drilling | Volumes injected per well are relatively modest so low tech wells are sufficient | Completion of well | proven | | | | | | | Well site | standard
well site
prep CBM | If new injector is drilled, new site needs to be prepared | space, footprint | proven | | | | | | | CO2 transport | standard
piping | Need to evaluate whether low
pressure (plastic) or high
pressure (steel) pipes will be
used (compression at well-head
or central compression) | pipe capacity +
integrated
design with
compression | proven | | | | | | | CO2 storage at site | CO2
storage
tanks | CO2 storage buffer is required for pilot | Sufficient storage space to conduct pilot | proven | | | | | | ### Scope of technology blocks for storage – ECBM (3/4) | Technology Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum
perform) | Tools | Comm
ercial | Work
flow | |---------------------------|---------------------|--|--|--------|-------------------------|--|-------|----------------|--------------| | CO2 separation | standard
tech | Extra separation may be required. Separation is possible and proven. Moreover, there are almost no compression losses, because CBM gas is produced at low pressure (few bars). | efficiency
separation
process | proven | | | | | | | CO2 compression | standard
tech | New compressors can be build at compression station or at well site depending on economics | integrated
design
compression
site and well
site meeting
injection specs. | proven | | | | | | | M&V operational | | | | | | | | | | | Well | Standard
Sensors | Risk of leakage of CO2 comparable or smaller than risk of methane leakage. Monitoring similar as CBM, but include CO2 sensors. Also, there is standard mining technology to monitor methane and CO2 in mines. | detect leakage
both
concentration
and flux | proven | | | | | | | Surface | Standard
Sensors | In CBM field migration of methane to surface always poses a risk when de-watering. CO2 leakage is less likely because it adsorbs stronger to the coal. Monitoring program in conjunction with existing methane monitoring program. | detect leakage
both
concentration
and flux | proven | | | | | | #### Scope of technology blocks for storage – ECBM (4/4) | Technology Block function | Technology | Scope | Capacity and
Performance
(specification
parameters) | Proven | Expected proven by 2012 | Expected for Flagship
Demo (minimum
perform) | Tools | Comm
ercial | Work
flow | |---------------------------|--------------------------------------|--|--|--------|-------------------------|--|-------|----------------|--------------| | Ground water | Standard
Sensors | Again risk of methane contamination due to CBM operation is higher, comparable monitoring techniques for CO2 | detect CO2 or
CH4
contamination
of water | proven | | | | | | | Closure methodology | | | | | | | | | | | Facilities | Standard
abandonm
ent CBM | Re-use of facilities (compressors etc.) recommended | | proven | | | | | | | wells | Standard
abandonm
ent CBM | RECOPOL showed that it is difficult to get CO2 out of the coal | | proven | | | | | | | CO2 containment
M&V | Standard
monitoring
techniques | Risk CH4 leakage due to CBM at well site larger than CO2 leakage. | | proven | | | | | | | Post Closure
M&V | | | | | | | | | | | CO2 containment
M&V | sensors
surface
and water | Similar to post monitoring mining areas (CH4 leakage) | | proven | | | | | | | Termination procedure | | | | | | | | | | | Relinquishment | legal | Mining rights: Coal needs to be classified as storage medium to avoid conflict with future mining | legal issues
need to be
resolved | | | | | | |